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NUMERICAL STUDY OF WAVE PROPAGATION IN A NON-UNIFORM FLOW

ALEX POVITSKY�

Abstract. The propagation of acoustic waves originating from cylindrical and spherical pulses, in a

non-uniform mean 
ow, and in the presence of a re
ecting wall is investigated by Hardin and Pope approach

using compact approximation of spatial derivatives. The 2-D and 3-D stagnation 
ows and a 
ow around

a cylinder are taken as prototypes of real world 
ows with strong gradients of mean pressure and velocity.

The intensity and directivity of acoustic wave patterns appear to be quite di�erent from the benchmark

solutions obtained in a static environment for the same geometry. The physical reasons for ampli�cation and

weakening of sound are discussed in terms of dynamics of wave pro�le and redistribution of acoustic energy

and its potential and kinetic components. For an acoustic wave in the 
ow around a cylinder, the observed

mean acoustic pressure is approximately doubled (upstream pulse position) and halved (downstream pulse

position) in comparison with the sound propagation in static ambient conditions.

Key words. aeroacoustics, non-uniform mean 
ow, higher-order compact scheme, ampli�cation of

sound, stagnation 
ow, 
ow around cylinder
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1. Introduction. This study investigates numerically the in
uence of strong mean 
ow gradients on

the directivity and strength of sound waves propagating in such a 
ow.

The goal of this study is to get computational insight into physical mechanisms of angular redistribution

of acoustic energy and acoustic pressure. The considered mean 
ows include potential 
ow around a circular

cylinder, the 2-D and 3-D stagnation 
ows, and a 90o corner 
ow. These idealized mean 
ows mimic real

world 
ows in areas of strong sound re
ection and generation such as a leading edge of a wing or a turbine

blade, a protruding corner of a wall cavity, a wing-fuselage intersection, an impingement area of a jet, and

a 
ow behind a blu� body.

The ampli�cation or weakening of sound propagating in non-uniform 
ows has attracted considerable

attention of researchers. However, available computational studies are mainly restricted to one-dimensional

mean 
ows.

For one-dimensional 
ow in a duct with variable cross-section, the acoustic pressure appears to con-

centrate towards the duct centerline or the duct wall for upstream and downstream sound propagation,

respectively [11], [15]. Motivated by engine noise, the authors of these studies use the wave envelope method

(WEM) to study propagation of sound in one-dimensional and quasi one-dimensional mean 
ows This method

is based on consideration of the governing acoustic variables as sums of harmonics. Additional assumptions

are made about rapid axial oscillations and slowly varying amplitude and phase corrections caused by the

non-uniformity of the 
ow.

Atassi and Grzedzinsky [2] considered propagation of unsteady disturbances in 
ows around bodies

with a stagnation point. For incompressible mean 
ows, the aeroacoustic problem is formulated in terms

of an integral equation of the Fredholm type. The considered streamlined body and the corresponding
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potential mean 
ow result from superposition of a uniform 
ow and a source. Yet, additional assumptions

and simpli�cations (some of them depend on the type of potential background 
ow) are needed to perform

integration. Authors [2] present the disturbance pressure along the stagnation streamline that shows increase

of the disturbance pressure for an upstream harmonic disturbance.

Hardin and Pope approach [7] implies consideration of a 
ow�eld as a sum of the mean velocity and

a disturbance �eld and solution of disturbance variables in time and space domain by explicit integration

in time and use of appropriate spatial discretization. The computational methodology used in the current

study is based on above approach.

In order to use an analytical solution for mean 
ow, the 
ow in the current study is assumed to be

potential, i.e., inviscid and incompressible. The speed of sound (relative to the local mean 
ow velocity) is

assumed to be equal to unity. These assumptions are fair unless the Mach number exceeds 0:5:

In this paper, the relative orientation of the direction of wave propagation, mean pressure gradient,

and the mean 
ow vector are studied to show the ampli�cation or weakening of the acoustic pressure.

The consideration starts with two-dimensional stagnation mean 
ows, then the approach is expanded to

three-dimensional stagnation mean 
ows, and, �nally, applied to the inviscid 
ow around circular cylinder.

In all considered cases, the obtained acoustic pressure is compared with that for the wave propagation

under static ambient conditions and for the same geometry of surrounding rigid boundaries.

Variation of directivity of acoustic pressure implies changes in directivity of acoustic energy in comparison

with the sound propagation under static ambient conditions. This paper studies angular redistribution of

acoustic energy and its potential and kinetic components in non-uniform mean 
ows. The acoustic energy

is a sum of potential and kinetic components where the potential energy is closely related to the averaged-

in-time root mean square of acoustic pressure which is usually measured by experimentalists as an indicator

of noise intensity.

Our recent study [12] shows that the generation of sound waves originated from entropy sources is caused

by baroclinic generation of disturbance vorticity as a result of interaction of the mean 
ow pressure gradient

and the wave density gradient. In turn, this generated vorticity causes the generation (or sink) of acoustic

energy by the source term in the acoustic energy equation. Order of magnitude analysis suggests that the

source term can not be neglected in the acoustic energy equation. This study presents vorticity and energy

source terms obtained from numerical simulation. For the propagation of acoustic waves originated from

an acoustic pulse (as opposed to the sound generation from entropy or vorticity pulses [12]), The major

e�ect of the non-uniformity of the mean 
ow on the wave propagation (as opposed to the wave generation

from entropy or vorticity pulses [12]) is the angular redistribution of acoustic energy and kinetic-to-potential

transform whereas the newly generated acoustic energy appears to be minor.

The article is built as follows. In Section 2, the wave propagation originated from a cylindrical 2-D

source in 2-D stagnation-type 
ows is studied and numerical results about ampli�cation of acoustic pres-

sure, alternation of wave pattern, and acoustic energy redistribution are presented. In Section 3, the wave

propagation from a spherical source is considered in 3-D stagnation 
ows. The symmetric 3-D stagnation


ow with a single stagnation point and the 3-D stagnation 
ow with stagnation line 
ow are taken as typical

representatives of three-dimensional stagnation mean 
ows. In Section 4, the inviscid 
ow around a circular

cylinder is considered for various subsonic Mach numbers of the mean 
ow. Ampli�cation of sound (for

upstream wave propagation) and weakening of sound (for downstream wave propagation) is studied in this

Section.
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2. Sound propagation in a 2-D stagnation-type mean 
ow. The common type of mean 
ow is

that the 
ux across a given surface is equal to zero, either because the surface is a symmetry surface or

because the surface is the boundary of a rigid body [3]. If two straight zero-
ux boundaries intersecting at

an angle �=n the stream-function �eld for incompressible 
ow is given by

 = Arnsin(n�); (2.1)

where (r; �) are polar coordinates. Note that  = 0; if � = 0 or � = �=n: For example, the 2-D stagnation


ow

U = x; V = �y (2.2)

is a union of two 
ows with n = 2 where the dividing streamline is the symmetry axis of the 
ow.

Introducing a disturbance, instantaneous velocities and density are considered as sums of the known

steady incompressible mean 
ow (see above) and the unsteady compressible isentropic disturbance

u = U + u0; v = V + v0; p = P + p0; � = 1 + �0: (2.3)

The normalized speed of sound is assumed to be equal to unity and, therefore, pressure and density distur-

bances are equal for acoustic pulse. Substituting above sums to the Euler equations, the dynamic equations

for unsteady (disturbance) components of mass and momentum 
uxes are obtained

qt + fx + gy = 0; (2.4)

where

q=

0
B@

�0

(1 + �0)(U + u0)

(1 + �0)(V + v0)

1
CA ; f=

0
B@

(1 + �0)(U + u0)

(1 + �0)(U + u0)2 + (P + p0)

(1 + �0)(U + u0)(V + v0)

1
CA ; g=

0
B@

(1 + �0)(V + v0)

(1 + �0)(U + u0)(V + v0)

(1 + �0)(V + v0)2 + (P + p0)

1
CA :

(2.5)

The equations are linearized and solved with respect to unknown disturbance variables in space-time

domain

@u

@t
= �

@p

@x
� U

@u

@x
�

@U

@x
u� V

@u

@y
�

@U

@y
v � V

@U

@y
�� U

@U

@x
�;

@v

@t
= �

@p

@y
� V

@v

@y
� U

@v

@x
�

@V

@x
u�

@V

@y
v � U

@V

@x
�;�V

@V

@y
�;

@�

@t
= �

@u

@x
�

@v

@y
� U

@�

@x
� V

@�

@y
: (2.6)

The spatial derivatives of the mean 
ow variables for arbitrary n are presented in Appendix A. The non-linear

set of equations for the 2-D stagnation mean 
ow is presented in our study [12].

2.1. Numerical algorithm and the code validation. The solution is advanced in time in �ve sub-

stages per time step using a low-storage explicit-in-time fourth-order Runge-Kutta (RK) scheme scheme

proposed by Williamson [16] and implemented by Wilson et al. [17].

The spatial derivatives of unknown disturbance variables are approximated using compact �nite di�er-

ence schemes [10] applied to natural variables u0; v0 and �0

�U
0

i�1 + U
0

i + �U
0

i+1 =
a

2�x
(Ui+1 � Ui�1) +

b

2�x
(Ui+2 � Ui�2); (2.7)
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where U
0

i�1; U
0

i ; and U
0

i+1 are unknown derivatives at grid nodes i� 1; i; and i+ 1; �x is the grid step and

Ui�2; :::; Ui+2 denote values of variable U at grid nodes i � 2; :::; i+ 2: The values of U are taken from the

previous stage of the RK scheme. Here the classical fourth-order Pad�e compact scheme (� = 0:25; a = 1:5

and b = 0) which has a tridiagonal matrix for the right and left sides of (2.7) is used.

At all boundaries but a rigid plate characteristic in
ow or out
ow boundary conditions are applied

to disturbance variables. At a rigid surface, re
ection boundary conditions are used for pressure distur-

bance and for the parallel to the surface component of velocity disturbance whereas the normal to the rigid

surface component of velocity is taken equal to zero. Discretization of spatial derivatives in the direction

perpendicular to a boundary are computed by one-sided �nite di�erences at all boundaries [4].

The system (2.7) with near-boundary one-sided di�erences is solved by version of Gaussian elimination

for narrow banded systems known as the Thomas algorithm [9] applied to each line of numerical grid in all

spatial directions.

To validate the code against the known analytical solution [8], the static ambient conditions (i.e., the

mean 
ow velocity is equal to zero) are taken. In this case, the right-hand side of system (2.6) is simpli�ed

as follows

@u

@t
= �

@p

@x
@v

@t
= �

@p

@y

@�

@t
= �

@u

@x
�
@v

@y
(2.8)

The initial 2-D cylindrical acoustic pulse is given by

p = � = � exp

�
�d2

(x� xc)
2 + (y � yc)

2

a

�
; (2.9)

where � = 0:01; a = ln(2)=9; d = 60 is the normalization coe�cient, (xc; yc) is the pulse center coordinates.

To check the symmetry of solution, the computational domain is taken as a union of [�1; 1] � [�1; 0]

and [�1; 1]� [0; 1] subdomains separated by a rigid 
at plate located at y = 0: The couple of initial pulses

(2.9) is located at (0;�0:25): Isolines of acoustic pressure for this problem at 160� 160 grid per subdomain

are presented in Fig. 1 at t = 0:5: The isobar values are uniformly distributed between the maximum and

minimum of acoustic pressure. Although the Thomas algorithm is, strictly speaking, non-symmetric (as any

Gaussian elimination), the acoustic pressure �eld in Fig. 1a is perfectly symmetric.

The results of grid re�nement study are presented in Fig. 1b for [�1; 1]� [0; 1] computational domain

covered with 80� 80; 120� 120; and 160� 160 numerical grids. The visible wiggles exist only for the coarse

grid and the solution approaches the analytical solution including most critical points of the maximum and

minimum of the re
ected wave. For the transmitted wave, the numerical solution practically coincide with

the analytical solution [8] for �ner grids. Therefore, the grid 160� 160 has been adopted in this study.

2.2. Distribution of acoustic pressure. To study the acoustic pressure distribution in a non-uniform


ow, the 2-D stagnation inviscid mean 
ow is taken as an example (Case 2-A). The velocity �eld of the

stagnation mean 
ow and isobars of the initial acoustic pulse, centered at (0; 0:25); are presented in Fig. 2a

(left). The speed of sound is equal to unity and is presented in Fig. 2a for scale. As far as the stagnation


ow�eld satis�es Eq. (2.2), the Mach number at a point is equal to the local distance from the origin, i.e.,

the Mach number at the location of the center of initial pulse is equal to 0.25.
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The propagation of sound is described by the system (2.6) where the mean 
ow is given by (2.1) with

n = 2: Grid re�nement study for Case 2-A is presented in [12] and shows that the results on the 160� 160

and 200� 200 grids are quite closed to each other that con�rms the use of the former grid for simulations.

The isobars of acoustic pressure are presented in Fig. 2a (right) at t = 0:5: Approximate centerline

coordinates of the maximums of acoustic pressure for the transmitted and re
ected waves are 0:5 and 0:25;

respectively. Note that the Mach numbers at these points are equal to their y� coordinate values (see above).

As expected, the acoustic isobars obtained in the static ambient conditions, denoted here as Case 2-B, (Fig.

1a) are di�erent from those in the Case 2-A at the same time moment. In the Case 2-A, the y�coordinate

of the wave front at the neighborhood of the centerline is smaller and the x�coordinate of the wave front

near the wall is larger than those in the Case 2-B. The explanation is straightforward and is based on the

fact that the speed of sound in a steady frame is equal to c+ U; where c is the local speed of sound and U

is the local velocity of the 
ow�eld.

The density of isobars is larger at the neighborhood of the centerline and smaller near the wall in the

Case 2-A in comparison with those in the Case 2-B. In Fig. 3a, the acoustic pressure pro�les at the centerline

are presented for both cases at t = 0:5: The maximum absolute value of acoustic pressure is approximately

80% larger for the transmitted wave and two times larger for the re
ected wave than those in the Case 2-B.

Recall, that the speed of wave propagation is c + U: While the wave propagates upstream the decelerating

subsonic 
ow, its front moves slower than its back. The situation is opposite for the accelerating 
ow (which

is the case near the wall). Thus, the wave front becomes narrower at the neighborhood of the centerline and

wider while the stagnation 
ow spread along the wall in comparison to those in static ambient conditions.

Accelerating mean 
ow (backward 2-D stagnation 
ow) is considered to study the in
uence of the

mean 
ow direction on the wave patterns (Fig. 2b). The initial position of acoustic pulse, the mean 
ow

streamlines and the mean pressure distribution remain the same as for the Case 2-A. (compare Fig. 2b with

Fig. 2a). However, the direction of the maximum acoustic pressure has been considerably changed from

being perpendicular to the wall to being parallel to it. Still, the maximum acoustic pressure corresponds to

the direction where the sound propagates upstream of the mean 
ow.

To study the in
uence of the background 
ow while the acoustic pulse is located o� the centerline and

two re
ecting surfaces are present, the 90o� corner geometry is considered (Fig. 7). The rigid plains coincide

with the Cartesian axis. The potential 
ow in this geometry is described by a single stagnation 
ow with

n = 2 
owing to the right. Initial position of acoustic pulse is taken (0:25; 0:25); where the local Mach

number of the mean 
ow is approximately equal to 0:35:

Computational results in terms of acoustic pressure are compared with those obtained in the Case 2-B.

In the latter case the maximum acoustic pressure is in the bisector direction and the cylindrical shape of

wave pattern is symmetric with respect to the bisector (Fig. 7b). In presence of the mean 
ow, the waves


atten, especially in the neighborhood of the y�axis, where the sound propagates upstream of the mean


ow (Fig. 7a). The maximum acoustic pressure increases about 40% in comparison with that in the static

ambient conditions.

2.3. Distribution of acoustic energy. To get physical insight into ampli�cation of acoustic pres-

sure, acoustic energy is considered here. Transport equation of acoustic energy density for irrotational and

incompressible mean 
ow and adiabatic acoustic disturbance is given by [6]:

@E

@t
+rI = u0 � (U �!0); (2.10)
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where

E = p02=2 + u0
2=2 + �0u0 �U (2.11)

is the acoustic energy density and

I = (p0+ u0 �U )(u0+ �0U ) (2.12)

is the acoustic energy 
ux.

The acoustic energy is a sum of potential energy Pot = p02=2; that mimics the strength of acoustic

pressure in compressible media, and kinetic energy K = u0
2=2 + �0u0 �U :

The centerline distribution of E is presented in Fig. 3b, where the curve 1 corresponds to the Case

2-A and the curve 2 corresponds to the Case 2-B. For the re
ected wave, the local maximum of E in the

Case 2-A is about three times greater than that in the Case 2-B. Its location is the same as that for the

maximum acoustic pressure (compare Fig. 3b to Fig. 3a) and the ratio of acoustic energies is similar to the

ratio of squares of acoustic pressures (four times). It is not the case for the transmitted wave, where the

maximum values of E are almost the same in cases 2-A and 2-B in spite of the obvious di�erence in the

acoustic pressure values.

To show the total acoustic energy along the centerline, the integrals

IE =

Z y

0

E(y)dy (2.13)

and

IP =

Z y

0

Pot(y)dy (2.14)

are plotted as functions of y at the time moment t = 0:5 in Fig. 3c. Obviously, the integrals reach their

maximum when the coordinate y exceeds the front coordinate of the transmitted wave. The values of these

maximums for integral of acoustic energy di�er only by 15% whereas the di�erence in integrals of potential

energy is about two times. Thus, the ampli�cation of sound along the centerline occurs mainly by increase

of the potential part in total acoustic energy.

On the contrary, for the bisector direction (45o) and for a near-wall direction (75o) the part of potential

energy remains approximately the same for the stagnation mean 
ow and for the static ambient conditions.

Therefore, the weakening of sound near the wall occurs mainly due to the angular redistribution of acoustic

energy. The direction-dependent behavior of acoustic energy is explained by the relative value of the last

term in (2.11). If sound propagates upstream of the mean 
ow, the vectors in the inner product u0 � U are

collinear, therefore, the variation of U in a non-uniform mean 
ow leads to more prominent reduction of the

kinetic energy in comparison with other directions. The kinetic energy transforms into potential energy and

leads to increase of potential part in the acoustic energy.

To study the generation of acoustic energy by means of interaction of the wave with the non-uniform

mean 
ow, we present here the simpli�ed form of the vorticity transport equation [12]:

D!0

Dt
= r�0 � rP: (2.15)

Note that the presence of the pressure gradient in the mean 
ow (i.e., non-uniformity of the 
ow) leads

to non-zero right-hand side of above equation. Otherwise, the vorticity !0 remains equal to zero as in an

irrotational mean 
ow. In turn, the non-zero !0 leads to the non-zero source term in the energy equation
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(2.10). The vorticity is generated where the acoustic wave passes, i.e. r�0 6= 0: As far as u0 is a multiplier

in the right-hand side of Eq. (2.10), the exchange of energy between the steady mean 
ow and the unsteady

disturbance occurs only in presence of the wave. The generated vorticity 
ows with the local speed of

background 
ow and eventually the vorticity is left behind the wave, that moves with the sonic speed. The

instantaneous pattern of the vorticity generation source and the acoustic energy source at t = 0:5 are shown

in Fig. 5. As expected, areas of maximum acoustic energy generation coincide with instantaneous positions

of the re
ected and transmitted waves.

Approximately, the maximum value of the energy source term is located at the bisector direction (450):

In Fig. 6, the acoustic energy and its source are shown as functions of the distance from the origin along the

bisector line at t = 0:5: The maximum value of the source is approximately one order of magnitude smaller

than that for the acoustic energy. Therefore, the local gain of acoustic energy is small in comparison with

the angular redistribution of acoustic energy and kinetic-to-potential transforms considered above.

3. Acoustic pulse in the 3-D stagnation 
ow. In this section we consider a spherical pulse prop-

agating in a 3-D stagnation 
ow. The 3-D stagnation 
ow with a single stagnation point at the origin is

denoted as Case 3-A and given by

W = �z; U = 0:5x; V = 0:5y: (3.1)

The stagnation 
ow with the stagnation line (Case 3-B) is

W = �z; U = x; V = 0: (3.2)

The developed code is readily available for 3-D parallel computations as well [13].

In Case 3-A, the propagation of disturbance is described by the following system of equations

@u

@t
= �

@p

@x
+ 0:5(�x

@u

@x
� u� y

@u

@y
� x�) + z

@u

@z

@v

@t
= �

@p

@y
+ 0:5(�y

@v

@y
� x

@v

@x
� v � y�) + z

@v

@z
;

@w

@t
= �

@p

@z
+ 0:5(�y

@w

@y
� x

@w

@x
) + w � z�+ z

@w

@z
;

@�

@t
= �

@u

@x
�

@v

@y
�

@w

@z
+ 0:5(�x

@�

@x
� y

@�

@y
) + z

@�

@z
: (3.3)

In Case 3-B, the governing system of equations is given by

@u

@t
= �

@p

@x
� x

@u

@x
� u� x�+ z

@u

@z
@v

@t
= �

@p

@y
� x

@v

@x
+ z

@v

@z
;

@w

@t
= �

@p

@z
� x

@w

@x
+ w � z�+ z

@w

@z
;

@�

@t
= �

@u

@x
�

@v

@y
�

@w

@z
� x

@�

@x
+ z

@�

@z
: (3.4)

The initial 3-D spherical acoustic pulse is given by an expression similar to (2.9).

To validate the code, the computations are performed on a set of numerical grids where the wave spreads

under static ambient conditions and in presence of the rigid re
ecting plate (Case 3-C). The analytic solution

for acoustic pressure in case of the in�nite domain is given by

p =
�

2r
f(r � t) exp[�a(r � t)2] + (r + t) exp[�a(r + t)2]g; (3.5)
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where r is the location of the pulse center at t = 0: Solution for the semi-in�nite domain is obtained by use

of the image pulse located at �r :

p = p(r) + p(�r): (3.6)

Results of computations on 803, 1203, and 1603 grids are compared to the above analytic solution.

Pro�les of the centerline acoustic pressure on the above set of grids at t = 0:5 are presented in Fig. 8. The

observations from the grid re�nement study are similar to those obtained for the 2-D case (Section 2). The

numerical solution on the 1603 numerical grid practically coincides with the analytic solution and this grid

is used for numerical simulations.

To compare acoustic �elds in Cases 3-A, 3-B, and 3-C, the isolines of acoustic pressure at t = 0:5 are

shown in Fig. 9. In Cases 3-A and 3-C (Fig. 9a, b), the acoustic �eld is uniform with respect to the direction

in the x� y plane. The presence of the stagnation 
ow leads to ampli�cation of sound at the neighborhood

of the centerline. In Case 3-B, the wave pattern is direction-dependent: the maximum elongation of the

wave pattern along the rigid plane occurs in the section x � z; whereas the minimum elongation is in the

section y � z: In the latter case, the elongation is closed to that for the Case 3-C (compare Fig. 9a to Fig.

9d). Yet, the centerline position of the pulse is the same in Cases 3-A and 3-B (see Fig. 9b,c, and d).

The centerline acoustic pressure for Cases 3-A and 3-B is presented together with its counterpart for the

Case 3-C at t = 0:5 in Fig. 10. In spite of the di�erent wave pattern in Cases 3-A and 3-B, the centerline

pro�les coincide for these cases. The ampli�cation of acoustic pressure along the centerline is controlled

by redistribution of the potential and kinetic parts of acoustic energy in this direction as opposed to the

angular redistribution of acoustic energy (see the previous section). As far as the centerline pro�les of the

mean velocity and pressure are the same in Cases 3-A and 3-B, the pro�les of acoustic pressure appear to

be the same along the centerline. Note that this is quite a special situation where both the initial conditions

of pulse and the background 
ow velocity are the same along the streamline for two di�erent 
ows.

The maximum acoustic pressure for the transmitted wave is two times larger in Cases 3-A and 3-B than

that in the Case 3-C. The maximum acoustic pressure for the re
ected wave becomes about three times

larger in presence of stagnation 
ow than that for the static ambient conditions.

The ampli�cation of sound in the 3-D case is larger than that in the 2-D case. Recall that in both cases

the background 
ow velocity and pressure are the same along the centerline. To get qualitative explanation

of such a di�erence, the analytic solutions for acoustic pressure at the centerline (static ambient conditions)

is presented for the 2-D and 3-D cases in Fig. 11a. The spatial derivative of acoustic pressure along the

centerline is shown in Fig. 11b. By inspection of Fig. 11a and by comparison of derivatives in Fig. 11b, one

can conclude that the back and front wave fronts are sharper in the 3-D case than those in the 2-D case.

The front of the wave propagating upstream move slower than the back of it, that leads to the ampli�cation

of sound (see the previous section). The sharper the wave front is, the more prominent is the phenomenon.

Therefore, the 3-D pulse in a 3-D stagnation 
ow ampli�es larger than that in the 2-D case.

4. Aeroacoustics of the 
ow over a circular cylinder. The propagation of sound waves from

a single acoustic pulse in the 2-D, inviscid irrotational, incompressible mean 
ow over an in�nite circular

cylinder is considered here. The computational domain is shown in Fig. 12. The circle of unit diameter

(Rcyl = 0:5) is the inner boundary and a circle of 3.5 diameter is the outer boundary. At the outer boundary

the mean 
ow is practically uniform. The streamlines of the mean 
ow and the isobars of mean pressure are

computed analytically for potential 
ow [1] and presented in Fig. 12. The pulse is located at the centerline,

in some distance from the rigid cylinder. While the mean 
ow is directed from left to right, the acoustic
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waves, originated from the pulse, propagate upstream of the mean 
ow. Otherwise, the acoustic waves

propagate downstream of the mean 
ow. The mean 
ow in front of the cylinder can be described by the

incompressible potential 
ow model fairly well up to M = 0:5: The after-body 
ow can be described by this

model when M � 0:4: It has been shown that the 
ow streamlines around cylinder are quite similar to those

for incompressible 
ow if M � 0:4: [14]. For higher Mach number, strong recirculating zones appear at the

rear part of the cylinder and the shock waves take place at the mid-section of the cylinder.

In polar (r; �) coordinates, the equations of propagation of small disturbances in a known potential 
ow

are given by

@u

@t
= �

@p

@r
� U

@u

@r
�

@U

@r
u� U

@U

@r
��

1

r
(V
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@�
+
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@�
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�)�
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r
�(V 2

� 2V v)
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1

r
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�
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V
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�
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u� U

@V

@r
��

1

r
(
@V

@�
v + V

@V

@�
�)�

1

r
(�UV + Uv + V u);

@�

@t
= �

@u

@r
� U

@�

@r
�

u

r
�

�U

r
�

1

r
(
@v

@�
+ V

@�

@�
); (4.1)

where U; V; u; and v are radial and angular components of the mean 
ow velocity and disturbance velocity,

respectively. The mean 
ow velocity and its derivatives are computed by [1]. The initial acoustic pulse is

given by (2.9). The uniform grid 360� 360 in polar computational space is used.

In Fig. 13, isobars of acoustic pressure at t = 0:5 are presented for upstream propagation of acoustic

pulse (Case CYL-A) at M = 0:5, downstream propagation of acoustic pulse (Case CYL-B) at M = 0:4, and

static ambient conditions (Case CYL-C). In Fig. 14, the centerline pressure distribution is presented for

these cases at time moments t = 0:5; 1:0; 1:5; 2: In comparison with the Case CYL-C, the acoustic pressure

is ampli�ed at the neighborhood of the centerline in the Case CYL-A and is weakened in the Case CYL-B.

To get the sound directivity at di�erent Mach numbers for Cases CYL-A and CYL-B, the root mean

square of acoustic pressure is calculated by

prms =

sZ T

0

p2dt=T; (4.2)

where p is the acoustic pressure (p is equal to �) and T is the time period of summation. This time

period is chosen constant and equal for all numerical experiments presented below. For temporal numerical

integration, the integral in (4.2) is computed as sum of values of squares of acoustic pressure at all time steps

over the period, T . The p2 as a function of time for Cases CYL-A, CYL-B, and CYL-C at the centerline

location �5Rcyl is presented in Fig. 15. Curves have two stairs corresponding to passing transmitted and

re
ected waves. The time period, T; covers the pass of both waves. The prms represents the time-averaged

potential part of acoustic energy passing through a �xed point in space.

In Fig. 16, the prms is shown as function of angle � from the centerline while the radial coordinate is

equal to �5Rcyl: The curves are presented for various Mach numbers from M = �0:4 to M = 0:5 with step

0:1: The pressure pulse is located at the distance 0:25Rcyl from the cylinder (Fig. 16a,b) and at the distance

0:5Rcyl (Fig. 16c,d) at t = 0: The positive Mach numbers correspond to the Case CYL-A (Fig. 16a,c), the

negative Mach numbers represent the Case CYL-B (Fig. 16b,d), and the zero Mach number is the Case

CYL-C. The latter case is presented in (Fig. 16a-d) as a benchmark for comparison. The presented results

are normalized in such a way that the prms at the centerline in the Case CYL-C is equal to unity.

The prms increases with the Mach number and reaches 2.2 while M = 0:5 (Fig. 16a). Even far apart

from the centerline (� = 60o); the prms for M = 0:5 is about twice as many as that for the Case CYL-C

(M = 0) in the same direction.
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For the Case CYL-B, the prms reduces with the absolute value of the Mach number and becomes 0:65

at the centerline while M = �0:4: The level of prms is smaller than that for the Case CYL-C up to � = 45o:

The degree of increase and reduction of acoustic pressure is slightly bigger when the pulse is located more

close to wall (compare Fig. 16a,b with Fig. 16b,d). Note, that the di�erence between acoustic pressures

is quite small for these pulse locations in Case CYL-C. The reason for such a di�erence for non-zero Mach

numbers is that the re
ected wave propagates in the direction opposite to the far-�eld sound before it hits

the wall. For instance, in the Case CYL-A the re
ected wave propagates downstream before its re
ection

from the cylinder and its acoustic pressure decreases.

5. Conclusions. The behavior of acoustic waves originating from the single pulse and propagated in

the non-uniform incompressible background 
ow is studied by numerical simulation using Hardin and Pope

approach. Higher-order compact spatial �nite di�erences and Runge-Kutta temporal integration are used.

Results are compared to those obtained for the same geometry in the static ambient conditions.

It is shown, that the acoustic pressure is almost doubled while the waves propagate upstream of the

stagnation 
ow and the background 
ow reaches M = 0:5: Alternation of the direction of stagnation 
ow

change the direction of sound propagation from perpendicular to a wall to parallel to it. Sound propagation

in a corner while in the presence of the background inviscid 
ow leads to ampli�cation of sound and 
attening

of acoustic waves.

In terms of acoustic energy, the modi�ed sound directivity in the presence of stagnation 
ow is mainly

caused by redistribution of potential and kinetic components of acoustic energy (while sound propagates

upstream) and by angular redistribution of acoustic energy (while directions of the mean 
ow and sound

propagation are far from collinear). The pump of acoustic energy from the background 
ow by means of

baroclinically generated vorticity is minor.

The propagation of acoustic wave originated from spherical pulse in 3-D stagnation 
ows was considered

and the wave pattern in the neighborhood of the single stagnation point and the stagnation line are discussed.

The ampli�cation of sound by a mean 
ow is more prominent in the 3-D case than in the 2-D case because

of steeper acoustic wave bounds.

Finally, the propagation of acoustic pulse in the 
ow around the 2-D circular cylinder is modeled.

The time-averaged root mean square of acoustic pressure (rms) is presented as function of angle from the

centerline. To compare with the static ambient conditions, the rms of acoustic pressure at the centerline

is approximately doubled (upstream pulse position, M = 0:5) and halved (downstream pulse position,

M = 0:4). The ampli�cation (upstream pulse position) and weakening (downstream pulse position) of sound

holds for a large angular sector apart from the centerline.

This study can be expanded to cases where a compressible mean 
ow is computed by a CFD method and

the acoustic source distribution is extracted from appropriate turbulence modeling. Investigation of sound

ampli�cation is expected to be important for higher Mach number 
ows where the velocity and pressure

gradients in the mean 
ow are larger than those in the low-Mach-number 
ows considered here.
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Appendix A. Mean-
ow variables for a 
ow between two straight streamlines.

In Cartesian coordinates, the stream-function is given by

 = A(x2 + y2)0:5nsin(n arctan(x=y)); (A.1)

The velocity �eld (U(x; y); V (x; y)) is computed by di�erentiation of the stream-function de�ned above

U(x; y) =
@ 

@y
; V (x; y) = �

@ 

@x
(A.2)

Using Mathematica [18], the following expressions for velocities and their derivatives are obtained

U(x; y) = Anrn�2(x cosn� + y sinn�); (A.3)

V (x; y) = Anrn�2(y cosn� � x sinn�); (A.4)

@U(x; y)

@x
= Anrn�4((n� 1)(y2 � x2) cosn� + 2(n� 1)xy sinn�); (A.5)

@U(x; y)

@y
= Anrn�4((n� 1)(x2 � y2) sinn� � 2(n� 1)xy cosn�); (A.6)

where r =
p
(x2 + y2); and � = arctan(x=y):

For an incompressible and irrotational mean 
ow,

@U(x; y)

@x
= �

@V (x; y)

@y
;
@U(x; y)

@y
=
@V (x; y)

@x
: (A.7)
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Fig. 1. Acoustic pulse propagation in the static ambient conditions in presence of the rigid wall. a) Isolines of acoustic

pressure. Combined computational domain [�1; 1] � [�1; 1]; is covered with the 320 � 320 grid. b) Pro�les of the centerline

acoustic pressure. Computational domain [�1; 1]� [0; 1] is covered with the following numerical grids 1) 80� 80; 2) 120� 120;

and 3) 160� 160; 4) is the analytical solution [8].
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Fig. 9. Isobars of acoustic pressure for 3-D pulse at t = 0:5 : a) static ambient conditions, b) stagnation mean 
ow (3.1)

c-d) stagnation 
ow (3.2), where c) x� z section, d) y � z section.
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Fig. 11. Acoustic pulse propagation and re
ection in static ambient conditions (analytic solution): a) centerline acoustic

pressure, b) the spatial derivative of acoustic pressure along the centerline. The direction of the x�coordinate coincides with

the centerline, graphs (1) and (2) denote 2-D cylindrical pulse (Case 2-B) and 3-D spherical pulse (Case 3-C), respectively.
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Fig. 13. Isobars of acoustic pressure at t = 1:5: a) upstream propagation of sound (Case CYL-A) b) downstream prop-

agation of sound (Case CYL-B), and c) static ambient conditions (Case CYL-C). The direction of x� coordinate coincides

with the centerline. Time moments: 1) t = 0:5; 2) t = 1:0; 3) t = 1:5; 4) t = 2:0:
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Fig. 14. Centerline acoustic pressure for pulse near a circular cylinder: Conditions for graphs (a-c) are the same as in

the previous �gure.
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Fig. 16. Root mean square (rms) of acoustic pressure: a,b) pulse location Rinit = 0:25Rcyl; c,d) pulse location Rinit =

0:5Rcyl; a,c) upstream propagation (Case CYL-A), b,d) downstream propagation (Case CYL-B)
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